
Abstract

CGI scripts enable dynamic generation of HTML pages.
This paper describes how to write CGI scripts using Tcl.
Many people use Tcl for this purpose already but in an
ad hoc way and without realizing many of the more non-
obvious benefits.  This paper reviews these benefits and
provides a framework and examples.  Canonical solu-
tions to HTML quoting problems are presented.  This
paper also discusses using Tcl for the generation of dif-
ferent formats from the same document.  As an exam-
ple, FAQ generation in both text and HTML are
described.

Keywords: CGI; FAQ; HTML generation; Tcl; World
Wide Web

Introduction

CGI scripts enable dynamic generation of HTML pages
[BLee].  Specifically, CGI scripts generate HTML in
response to requests for Web pages.  For example, a
static Web page containing the date might look like this:

<p>The date is Mon Mar  4 12:50:10 EST
1996.

This page was constructed by manually running the date
command and pasting its output in the page.  The page
will show that same date each time it is requested, until
the file is manually rewritten with a different date.

Using a CGI script, it is possible to dynamically gener-
ate the date.  Each time the file is requested, it will show
the current date.  This script (and all others in this paper)
are written in Tcl [Ouster].

puts "Content-type: text/html\n"
puts "<p>The date is [exec date]."

The first puts command identifies how the browser
should treat the remainder of the data – in this case, as
text to be interpreted as HTML.  For all but esoteric
uses, this same first line will be required in every CGI
script.

CGI scripts have many advantages over statically writ-
ten HTML.  For example, CGI scripts can automatically
adapt to changes in the environment, such as the date in
the previous example.  CGI scripts can run programs,
include and process data, and just about anything that
can be done in traditional programs.

CGI scripts are particularly worthwhile in handling Web
forms.  Web forms allow users to enter data into a page
and then send the results to a Web server for processing.
The Web form itself does not have to be generated by a
CGI script.  However, data entered by a user may
require a customized response.  Therefore, a dynami-
cally generated response via a CGI script is appropriate.
Since the response may produce another form, it is com-
mon to generate forms dynamically as well as their
responses.

CGI Scripts Are Just a Subset of Dynamic
HTML Generation

CGI scripts are a special case of generated HTML.
Generated HTML means that another program produced
the HTML.  There can be a payoff in programmatic gen-
eration even if it is not demanded by the CGI environ-
ment.  I will describe this idea further later in the paper.

Simply embedding HTML in Tcl scripts does not in
itself provide any payoff.  For instance, consider the
preparation of a page describing various types of wid-
gets, such as button widgets, dial widgets, etc.  Ignoring
the body paragraphs, the headers could be generated as
follows:

puts "<h3>Button Widgets</h3>"
puts "<h3>Dial Widgets</h3>"

Much of this is redundant and suggests the use of a pro-
cedure such as this one:

proc h3 {header} {
puts "<h3>$header</h3>"

}

Now the script can be rewritten:

h3 "Button Widget"

Writing CGI scripts in Tcl

Don Libes
National Institute of Standards and Technology

libes@nist.gov

Reprinted fromThe Proceedings of the Fourth Annual Tcl/Tk Workshop ‘96, Monterey, CA, July 10-13, 1996.



h3 "Dial Widget"

Notice that you no longer have to worry about adding
closing tags such as /h3 or putting them in the right
place.  Also, changing the heading level is isolated to
one place in each line.

Using a procedure name specifically tied to an HTML
tag has drawbacks.  For example, consider code that has
level 3 headings for both Widgets and Packages.  Now
suppose you decide to change just the Widgets to level
2.  You would have to look at each h3 instance and man-
ually decide whether it is a Widget or a Package.

In order to change groups of headers that are related, it
is helpful to use a logical name rather than one specifi-
cally tied to an HTML tag.  This can be done by defin-
ing an application-specific procedure such as one for
widget headers:

proc widget_header {heading} {
h2 "$header Widget"

}
proc package_header {heading} {

h3 "$heading Package"
}

The script can then be written:

widget_header "Button"
widget_header "Dial"
package_header "Object"

Now all the widget header formats are defined in one
place – the widget_header procedure.  This includes not
only the header level, but any additional formatting.
Here, the word “Widget” is automatically appended, but
you can imagine other formatting such as adding hyper-
links, rules, and images.

This style of scripting makes up for a deficiency of
HTML: HTML lacks the ability to define application-
specific tags.

Form Generation

The idea of logical tags is equally useful for generation
of Web forms.  For example, consider generation of an
entry box.  Naively rendered in Tcl, a 10-character entry
box might look this way:

puts "<input name=Username size=10>"

This is fine if there is only one place in your code which
requires a username.  If you have several, it is more con-
venient to place this in a procedure.  Dumping this all
into a procedure simplifies things a little, but enough
additional attributes on the input tag can quickly render
the new procedure impenetrable.  Applying the same

technique shown earlier suggests two procedures: text
and username.  text is the application-independent
HTML interface.  username is the application-specific
interface.  An example definition for username is shown
below.  Remember that this is specific to a particular
application.  In this case, a literal prompt is shown (the
HTML markup for this would be defined in yet another
procedure).  Then the 10-character entry box containing
some default value.

proc username {name defvalue} {
prompt "Username"
text $name $defvalue 10

}

When the form is filled out, the user’s new value will be
provided as the value for the variable named by the first
parameter, stored here in “name”.  Later in this paper,
I’ll go into this in more detail.

A good definition for text is relatively ugly because it
must do the hard work of adding quotes around each
value at the same time as doing the value substitutions.
This is a good demonstration of something you want to
write as few times as possible – once, ideally.  In con-
trast, you could have hundreds of application-specific
text boxes.  Those procedures are trivial to write and
make all forms consistent.  In the example above, each
call to username would always look identical.

proc text {name defvalue {size 50}} {
puts "<input name=\"$name\"\

    value=\"$defvalue\" size=$size>"
}

Once all these procedures exist, the actual code to add a
username entry to a form is trivial:

username new_user $user

Many refinements can be made.  For example, it is com-
mon to use Tcl variables to mirror the form variables.
The rewrite in Figure 1 tests whether the named form
variable is also a Tcl variable.  If so, the value is used as
the default for the entry.

If username called this procedure, the second argument
could be omitted if the variable name was identical to
the first argument.  For example:

username User

An explicit value can be supplied in this way:

username User=don

And arbitrary tags can be added as follows:

username User=don size=10 \
                 maxlength=5



Many other procedures are required for a full implemen-
tation.  Here are two more which will be used in the
remainder of the paper.  The procedure “p” starts a new
paragraph and prints out its argument.  The procedure
“put” prints its argument with no terminating newline.
And puts, of course, can be called directly.

proc p {s} {
puts "<p>$s"

}
proc put {s} {

puts -nonewline "$s"
}

Inline Directives

Some HTML tags affect characters rather than complete
elements.  For example, a word can be made bold by
surrounding it with <b> and </b>.  As before, redun-
dancy can be eliminated by using a procedure:

proc bold {s} {
puts "<b>$s</b>"

}

Unlike the earlier examples, it is not desirable to have
character-based procedures call puts directly.  Other-
wise, scripts end up looking like this:

put "I often use "
bold "Tcl"
put "to program."

These character-based procedures can be made more
readable by having them return their results like this:

proc bold {s} {
return "<b>$s</b>"

}

Using these inline directives, scripts become much more
readable:

p "I often use [bold Tcl] to
program."

Explicit use of a procedure such as bold shares the same
drawbacks as explicit use of procedures such as h2 and
h3.  If you later decide to change a subset of some uses,

you must examine all of them.  By using logical proce-
dure names, that trap is avoided.  For example, suppose
that you want hostnames to always appear the same way.
But there is no hostname directive in HTML.  So you
could arbitrarily choose bold and write:

proc hostname {s} {
return [bold $s]

}

An example using this is:

p "You may ftp the files from [host
$ftphost] or [host $ftpbackuphost]."

If you later decide to change the appearance of host-
names to, say, italics, it is now very easy to do so.  Sim-
ply change the one-line definition of the hostname
procedure.

URLs

URLs have a great deal of redundancy in them, so using
procedures can provide dramatic benefits in readability
and maintainability.  Similarly to the previous section,
hyperlinks can be treated as inline directives.  By pre-
storing all URLs, generation of a URL then just requires
a reference to the appropriate one.  While separate vari-
ables can be used for each URL, a single array
(_cgi_link) provides all URL tags with their own
namespace.   This namespace is managed with a proce-
dure called link.  For example, suppose that you want to
produce the following display in the browser:

I am married toDon Libes who works in the
Manufacturing Collaboration Technologies
Group atNIST.

Using the link procedure, with appropriate link defini-
tions, the scripting to produce this is simple:

p "I am married to [link Libes] who
works in the [link MCTG] at [link
NIST]."

This expands to a sizeable chunk of HTML:

proc text {nameval args} {
regexp "(\[^=]*)(=?)(.*)" $nameval dummy name q value

put "<input name=\"$name\""

if {$q != "="} {
set value [uplevel set $name]

}
puts " value=\"[quote_html $value]\" $args>"

}

Figure 1: Procedure to create a generic text entry



I am married to <A HREF="http://
elib.cme.nist.gov/msid/staff/libes/
libes.don.html">Don Libes</A> who
works in the <A HREF="http://
elib.cme.nist.gov/msid/groups/
mctg.htm">Manufacturing
Collaboration Technologies Group</A>
at <A HREF="http://
www.nist.gov">NIST</A>.

Needless to say, working on such raw text is the bane of
HTML page maintainers.  Yet HTML has no provisions
itself for reducing this complexity.1

The link procedure is shown in Figure 2.  It returns the
formatted link given the tag name as its first argument.

1. It is tempting to think that relative URLs
can simplify this, but relative URLs only
apply to URLs that are, well, relative.  In
this example, the URLs point to a different
host than the one where the referring page
lives.  Even if this isn’t the case, I avoid rel-
ative URLs because they prevent other peo-
ple from copying the raw HTML and
pasting it into their own page (again, on
another site) without substantial effort in
first making the URLs absolute.

The second argument, if given, declare a name to be dis-
played by the browser.  The third argument is the URL.

Links can be defined by handcoding the complete abso-
lute URL.  However, it is much simpler to create a few
helper variables to further minimize redundancy.  Figure
3 shows to refer to several of my colleagues whose
home pages all exist in the same staff directory.

If the location of any one staff member’s page changes,
only one line needs to be changed.  More importantly, if
the directory for the MSID staff pages changes, only one
line needs to be changed.  MSID_STAFF is dependent
on another variable that defines the hostname.  The host-
name is stored in a separate variable because 1) it is
likely to change and 2) there are other links that depend
on it.

Figure 4 shows some examples of hosts.

There are no restrictions on tag names or display names.
For example, sometimes it is useful to display “Don”.
Sometimes, the more formal “Don Libes” is appropri-
ate.  This is done by defining two links with different
names but pointing to the same URL.  This is shown in
Figure 5.

proc link {args} {
global _cgi_link

set tag [lindex $args 0]
if {[llength $args] == 3} {

set _cgi_link($tag) \
"<A HREF=\"[lindex $args 2]\">[lindex $args 1]</A>"

}
return $_cgi_link($tag)

Figure 2: Procedure to access a database of URL links.

set MSID_STAFF $MSID_HOST/msid/staff

link Steve "Steve Ray" $MSID_STAFF/ray.steve.html
link Don "Don Libes" $MSID_STAFF/libes.don.html
link Josh "Josh Lubell" $MSID_STAFF/josh.lubell.html

Figure 3: Create links to several colleagues who home pages all exist in the same staff directory.

set MSID_HOST http://elib.cme.nist.gov
set NIST_HOST http://www.nist.gov
set ORA_HOST http://www.ora.com

Figure 4: Some examples of hosts.

link Don "Don" $MSID_STAFF/libes.don.html
link Libes "Don Libes" $MSID_STAFF/libes.don.html

Figure 5: Create links to the same URL but display them to the user differently.



Similarly, there are no restrictions on the tag names
themselves.  Consider the link definitions in Figure 6.
These are used in paragraphs such as this one:

p "You can ftp Expect from
ftp.cme.nist.gov as [link Expect.Z]
or [link Expect.gz]"

A browser shows this as:

You can ftp Expect from ftp.cme.nist.gov as
pub/expect/expect.tar.Z or...gz.

Having link dependencies localized to one place greatly
aids maintenance and testing.  For example, if you have
a set of pages that use the definitions (i.e., by sourcing
them), editing that one file automatically updates all of
the other pages the next time they are regenerated.  This
is useful for testing groups of pages on a different
server, such as a test server before moving them over to
a production location.  Even smaller moves can benefit.
For example, it is common to move directories around
or create new directories and just move some of the files
around.

Quoting

HTML values must be quoted at different times and in
different ways.  Unfortunately, the standards are hard to
read so most people guess instead.  However, intuitively
figuring out the quoting rules is tricky because simple
cases don’t require quoting and many browsers handle
various error cases differently.  It can be very difficult to
deduce what is correct when your own browser accepts
erroneous code.  This section presents procedures for
handling quoting.

CGI Arguments

CGI scripts can receive input from either forms or
URLs.  For example, in a URL specification such as
http://www.nist.gov/expect?help=input+foo, anything to
the right of the question mark becomes input to the CGI
script (which conversely is to the left of the question
mark).

Various peculiar translations must be performed on the
raw input to restore it to the original values supplied by
the user.  For example, the user-supplied string “foo bar”
is changed to “foo+bar”.  This is undone by the first reg-
sub in unquote_input (shown in Figure 7).  The remain-

ing conversions are rather interesting but understanding
them is outside the point of this paper.

The converse procedure to unquote_input is shown
below.  This transformation is usually done automati-
cally by Web browsers.  However, it can be useful if
your CGI script needs to send a URL through some
other means such as an advertisement on TV.

proc quote_url {in} {
regsub -all " " $in "+" in
regsub -all "%" $in "%25" in
return $in

}

In theory, this procedure should perform additional
character translations.  However, you should avoid gen-
erating such characters since receiving URLs outside of
a browser requires hand-treatment by users.  In these sit-
uations, all bizarre character sequences should be
avoided.  For the purposes of testing (feeding input
back), additional translation is also unnecessary since
any other unquoted characters will be passed untouched.

Suppressing HTML Interpretation

In most contexts, strings which contain strings thatlook
like HTML will be interpreted as HTML.  For example,
if you want to display the literal string “<A
HREF=....>”, it must be encoded so that the “<” is not
turned into a hyperlink specification.  Other special
characters must be similarly protected.  This can be
done using quote_html, shown below:

proc quote_html {s} {
# ampersand must be done first!
regsub -all {&} $s {\&amp}  s
regsub -all {"} $s {\&quot} s
regsub -all {<} $s {\&lt}   s
regsub -all {>} $s {\&gt}   s
return $s

}

This can be used to simplify other procedures.  Adding
explicit double quotes before returning the final value
allows simplification of many other procedures.
Assuming this new procedure is called dquote_html,
consider the earlier text entry procedure which had the
code fragment

value=\"$defvalue\"

This could be rewritten:

value=[dquote_html $defvalue]

link Expect.Z   "pub/expect/expect.tar.Z" $EXPECT_DIR/expect.tar.Z
link Expect.gz  "...gz"   $EXPECT_DIR/expect.tar.gz

Figure 6: Link tags and definitions can be very unusual.  There are no restrictions.



Argument Cracking

As described earlier, input strings to a CGI script are
encoded by the browser.  Besides the transformations
described already, the browser also packs all variable
values together in the form variable1=value1&variable2
=value2&variableN=valueN.

The input procedure (Figure 8) splits the input back into
its specific variable/value pairs leaving them in a global
array called _cgi_var.  Any variable ending with the
string “List” causes its value to be treated as a Tcl list.
This allows, for example, multiple elements of a listbox
to be extractable as individual elements.

If the procedure is run in the CGI environment (i.e., via
an HTTPD server), input is automatically read from the
environment.  If not run from the CGI environment (i.e.,
via the command line), the argument is used as input.
This is very useful for testing.  An explicit argument
obviates the need for using a real form page to drive the
script and means it is easily run from the command line
or a debugger.

If the global variable _cgi(debug) is set to 1, the proce-
dure prints the input string before doing anything else.
This is useful because it may then be cut and pasted into
the procedure argument for debugging purposes, as was
just mentioned.

Import/Export

Variables are not automatically entered into separate
global variables or the env array because that would
open a security hole.  Instead, variables must be explic-
itly requested.  Several procedures simplify this.  The
procedure most commonly used is “import”.

import is called for each variable defined from the
invoking form.  For example, if a form used an entry
with “name=foo”, the command “import foo” would
define foo as a Tcl variable with the value contained in
the entry.  The command import_cookie is a variation
that obtains the value from a cookie variable – a mecha-
nism that allows client-side caching of variables.

proc import {name} {
upvar $name var
upvar #0 _cgi_uservar($name) val

set var $val
}

Form variables are automatically exported to the called
CGI script.  It is sometimes necessary to export other
variables.  This must be done explicitly.  Figure 9 shows
the export procedure which exports the named variable.
Similar to the text procedure, if the first argument is in
the form “var=value”, the variable as exported with the
given value.  Otherwise, the variable is treated as a Tcl
variable and its value is used.

proc unquote_input {buf} {
# rewrite "+" back to space
regsub -all {\+} $buf {\ } buf

# protect $ so Tcl won’t do variable expansion
regsub -all {\$} $buf {\$} buf

# protect [ so Tcl doesn’t do evaluation
regsub -all {\[} $buf {\[} buf

# protect quotes so Tcl doesn’t terminate string early
regsub -all \" $buf \\\" buf

# replace line delimiters with newlines
regsub -all "%0D%0A" $buf "\n" buf
# Mosaic sends just %0A.  This is handled in the next command.

# prepare to process all %-escapes
regsub -all {%([A-F0-9][A-F0-9])} $buf {[format %c 0x\1]} buf
# Mosaic sends just %0A.  This is handled in the next command.

# prepare to process all %-escapes
regsub -all {%([A-F0-9][A-F0-9])} $buf {[format %c 0x\1]} buf

# process %-escapes and undo all protection
eval return \"$buf\"

}

Figure 7: Translate HTML-style input to original data.



Error Handling

The CGI environment makes no special provisions for
errors.  Thus, error processing requires explicit handling
by the application programmer.  If none is made, any
error messages produced (e.g., by the Tcl interpreter)
are sent on to the client browser.  These are rarely mean-
ingful to the user.  Even worse, they can be misinter-
preted as HTML in which case the result is
incomprehensible even to the script creator.

The procedure in Figure 10 provides a framework to
evaluate the body of the CGI script, to automatically

catch errors, and attempt to do something useful.  The
two arguments, head and body, are blocks of Tcl com-
mands which create the head and body of an HTML
form.  An example is shown later.

If the global value _cgi(debug) is 1, the script error is
formatted and printed to the screen so that it is readable.
If debug is 0, a simple message is printed saying that an
error occurred and that the “diagnostics are being
emailed to the service system administrator”.  At the
same time, mail is sent to the service administrator.  The
mail includes everything about the environment that is
necessary to reproduce the problem including the error,

proc input {{fakeinput {}}} {
global env _cgi _cgi_uservar

if {![info exists env(REQUEST_METHOD)]} {
set input $fakeinput;# running by hand, so fake it

} elseif { $env(REQUEST_METHOD) == "GET" } {
set input $env(QUERY_STRING)

} else {
set input [read stdin $env(CONTENT_LENGTH)]

}
# if script blows up later, enable access to the original input.
set _cgi(input) $input

# good for debugging!
if {$_cgi(debug)} {

puts "<pre>$input</pre>"
}

set pairs [split $input &]
foreach pair $pairs {

regexp (.*)=(.*) $pair dummy varname val

set val [unquote_input $val]

# handle lists of values correctly
if [regexp List$ $varname] {

lappend _cgi_uservar($varname) $val
} else {

set _cgi_uservar($varname) $val
}

}

# repeat loop above but for cookies
}

Figure 8: Retrieve CGI input

proc export {nameval} {
regexp "(\[^=]*)(=?)(.*)" $nameval dummy name q value

if {$q != "="} {
set value [uplevel set $name]

}

put "<input type=hidden name=$name \
value=[dquote_html $value]>"

}

Figure 9: Export a variable to the CGI script.



the script name, and the input.  The implementation
shown here is skeletal.  In the actual definition, a variety
of other interesting problems are handled.  For instance,
cookie definitions must appear in the output before any
HTML.  However, cookies are more easily generated as
one of the final results in a script.  This and other prob-
lems are solved by the full implementation, however the
details are beyond the scope of this paper.

Using the procedures defined, CGI scripts become very
simple.  They all start out by sourcing the CGI support
routines.  Then cgi_eval is called with arguments to cre-
ate the head and body.  The head generates titles, link

colors, etc., while the body is responsible for importing,
exporting, and generation of text and graphical elements
as has already been described.  A skeletal example is
shown in Figure 11

The title procedure (not shown) produces all of the usual
HTML boilerplate including titles, backgrounds, etc.  A
form procedure simplifies the calling conventions for
establishing any forms.  This is not difficult.  However,
of critical importance is noting that a form is in
progress.  Because some browsers won’t show anything
if a form hasn’t been ended (i.e., “/form”), the error han-
dler must prematurely close the form if an unexpected

proc cgi_eval {head body} {
global env _cgi

set _cgi(body) "$head;cgi_body_start;app_body_start;$body;app_body_end"
uplevel #0 {

cgi_body_start
if 1==[catch $_cgi(body)] {      # errors occurred, handle them

set _cgi(errorInfo) $errorInfo

# close possible open form because some
# browsers won’t show errors otherwise
if [info exists _cgi(form_in_progress)] {

puts "</form>"
}

h3 "An internal error was detected in the service software. \
The diagnostics are being emailed to the service\
system administrator."

if {$_cgi(debug)} {
puts "Heck, since you’re debugging, I’ll show you the\

errors right here:"
# suppress formatting
puts "<xmp>$_cgi(errorInfo)</xmp>"

} else {
mail_start $_cgi(email_admin)
mail_add "Subject: $_cgi(name) problem"
mail_add
if {$env(REQUEST_METHOD) != "by hand"} {

mail_add "CGI environment:"
mail_add "REQUEST_METHOD: $env(REQUEST_METHOD)"
mail_add "SCRIPT_NAME: $env(SCRIPT_NAME)"
catch {mail_add "HTTP_USER_AGENT: $env(HTTP_USER_AGENT)"}
catch {mail_add "REMOTE_ADDR: $env(REMOTE_ADDR)"}
catch {mail_add "REMOTE_HOST: $env(REMOTE_HOST)"}

}
mail_add "input:"
mail_add "$_cgi(input)"
mail_add "errorInfo:"
mail_add "$_cgi(errorInfo)"
mail_end

}
}
cgi_body_end

}
}

Figure 10: Framework to catch errors and report them intelligently.



error occurs.  Saving this information is done with a
simple global variable.  The form procedure is shown in
Figure 12.

Many other utilities are necessary such as procedures
for each type of form element.  Space prevents inclusion
of them.  Several other miscellaneous utilities complete
the basic implementation of the procedures that appear
in this paper.  A few are mentioned here to give a flavor
for what is necessary:

cgi Converts a form name to a
complete URL.

mail_start Generates headers and writes
them to a new file representing
a mail message to be sent.

mail_add Writes a new line to the tempo-
rary mail file.

mail_end Appends a signature to the
temporary mail file, sends it,
and deletes the file.

cgi_body_start Generates the <body> tag and
handles user requests such as
backgrounds and various color

options.  cgi_body_end is anal-
ogous.

All of the procedures described so far can be invoked
with “cgi_” prepended (if they do not already begin that
way).  In practice, CGI scripts are generally quite short
so this isn’t often useful – and writing things like
“cgi_h2” is particularly irritating.  However conflicts
with other namespaces can occasionally make such pre-
fixes a necessary evil.

Several procedures are expected to be redefined by the
user.  Here are two examples that appear in the body
procedure earlier.

app_body_start Application-supplied proce-
dure, typically for writing ini-
tial images or headers common
to all pages.

app_body_end Application-supplied proce-
dure, typically for writing sig-
nature lines, last-update-by,
etc.

source cgi.tcl

cgi_eval {
title "Password Change Acknowledgment"
input "name=libes&old=swordfish&new1=tgif23&new2=tgif23

} {
import name
import old

... other stuff
form password {

spawn /bin/passwd
expect "Password:"
...

}
}

Figure 11: Skeletal example of the CGI procedures in use.

proc form {name cmd} {
global _cgi

set _cgi(form_in_progress) 1
puts "<form method=POST action=[cgi $x]>"
uplevel $cmd
puts "</form>"
unset _cgi(form_in_progress)

}

Figure 12: The form procedure creates an HTML-style form.



FAQ generation

Earlier I mentioned that CGI scripts are just a subset of
HTML generation.  As an example, consider the task of
building an FAQ in HTML.  There is no benefit to
dynamically generating an FAQ – it rarely changes.
However, an FAQ has some of the same problems as I
described earlier.  For example, it can include many
links which must be kept current.

Another reason that it makes sense to think about gener-
ating HTML for an FAQ is that an FAQ is highly styl-
ized.  For example, an FAQ always has a set of
questions.  These questions are then repeated but with
answers.  Written manually, you would have to literally
repeat the questions and create the links.  If a new ques-
tion was added or an old one deleted, you would have to
carefully make sure that both entries were handled iden-
tically.

Intuitively, this could be automated using two loops.
First, the questions and answers would be defined.  Then
the first loop would print the questions.  The second
loop would print the questions (again) interspersed with
the answers.  In pseudocode:

define QAs                ;# pseudocode!

foreach qa $QAs {
print_question $qa

}

foreach qa $QAs {
print_question $qa
print_answer $qa

}

It suffices to store the questions and answers in an array.
The following code numbers each pair and stores ques-

tion N in qa(N,q) and the corresponding answer in
qa(N,a).  At the same time, the question is printed out.
Thus, there is no need for the first loop in the earlier
pseudocode.

proc question {q a} {
global index qa

incr index

set qa($index,q) $q
set qa($index,a) $a

puts "<A HREF=\"#q$index\">"
puts "<li>$q"
puts "</A>"

}

Each question automatically links to its corresponding
answer, linked as #qN.  When the question/answer pairs
are later printed, they will have A HREF tags defining
the #qN targets.

The source for an example question/answer definition is
shown in Figure 13.

The question is now only stated once and it is always
paired with the answer.  This simplifies maintenance.

Notice that the answer is not simply a string.  The
answer is Tcl code.  This makes it possible to use all of
the techniques mentioned earlier.  For example, the
example above uses p to generate new paragraphs and
link to generate hyperlinks.

The code is evaluated by passing the answer to eval
whenever it is needed.  An answer procedure does this
and generates the hyperlink target at the same time.

proc answer {i} {

question {I keep hearing about Expect.  So what is it?} {

p "Expect is a tool primarily for automating interactive applications
such as telnet, ftp, passwd, fsck, rlogin, tip, etc.  Expect really
makes this stuff trivial.  Expect is also useful for testing these
same applications.  Expect is described in many books, articles,
papers, and FAQs.  There is an entire [link book] on it available
from [link ORA]."

p "You can ftp Expect from ftp.cme.nist.gov as [link Expect.Z] or
[link Expect.gz]"

p "Expect requires Tcl.  If you don’t already have Tcl, you can get
it in the same directory (above) as [link Tcl.Z] or [link Tcl.gz]."

p "Expect is free and in the public domain."

};# end question

Figure 13: Source to an example question/answer definition.



global qa

puts "<p>"
puts "<A NAME=\"q$i\">"
puts "<li><b>$qa($i,q)</b>"
puts "</a>"
puts "<p>"
eval $qa($i,a)

}

For example, “answer 0” would produce the beginning
of the output from the earlier question.  The full HTML
would begin like this:

<p>
<A NAME="q0">
<li><b>I keep hearing about Expect.
So what is it?</b>
</a>
<p>Expect is a tool primarily for
automating interactive . . .

The answer procedure itself is called from a loop in
another procedure called answers (Figure 14).  An
answer_header procedure prints out a header if one has
been associated with the current question.  This provides
a way of breaking the FAQ into sections.  A matching
procedure (question_header) defines and prints the
headers as they are encountered.

proc answer_header {i} {
global qa

h3 "$qa($i,h)"
}

proc question_header {h} {
global index qa

set qa($index,h) $h
puts "<A HREF=\"#h$index\">"
h3 $h
puts "</A>"

}

Translation to Other Formats

Another benefit of using logical tags is that different
output formats can be generated by changing the appli-

cation-specific procedures.  For instance, suppose a hor-
izontal rule is produced using the hr command.
Obviously this can be defined as “puts <hr>”.  It is eas-
ily changed to produce text using the following proce-
dure:

proc hr {} {
puts ============================

}

Here are analogous definitions for h1 and h2.  Others are
similar.

proc h1 {s} {
puts ""
puts "*"
puts "* $s"
puts "*"
puts ""

}

proc h2 {s} {
puts "*** $s ***"

}

For example, with this new definition, “h1 Questions”
reasonably simulates a level 1 header using only text as:

*
* Questions
*

The ability to generate the FAQ in different forms is
convenient.  For example, it means that people can read
the FAQ without having an HTML browser.

The generation of different formats is simplified by
avoiding use of explicit HTML tags and instead using
logical procedure names.  A particular output format can
be produced merely by providing an appropriate set of
procedure definitions.  Although I have not done so, it
should be possible to adapt the framework and ideas
shown here to produce output in such formats as TEX,
MIF, and others.  Even without translation, avoiding
explicit HTML is a good idea for the reasons mentioned
earlier – maintenance and readability.

proc answers {} {
uplevel #0 {

start_answers
for {set index 0} {$index < $maxindex} {incr index} {

catch {answer_header $index}
answer $index
hr

}
}

}

Figure 14: Generate all the answers in the FAQ.



A Translation Framework

Translation is further simplified by separating the appli-
cation-specific definitions from the content of the partic-
ular document.  For example, multiple FAQs could reuse
the same set of FAQ support definitions.  Each FAQ
would start by loading the FAQ definitions by means of
a source command appropriate to the desired output:

source FAQdriver.$argv

A driver for each output format defines the procedures
to produce the FAQ in that particular format.  For exam-
ple, FAQdriver.html would begin:

# driver.html - Tcl to HTML procs
proc hr {} {puts "<hr>"}

FAQdriver.text would start similarly:

# driver.text - Tcl to text procs
proc hr {} {puts ===================}

If short enough, all of the different definitions can be
maintained as a single file which simply uses a switch to
define the appropriate definitions.

switch $argv {
html {

proc emphasis {s} {
puts "<em>$s</em>"

}
. . .

}
text {

proc emphasis {s} {puts "*$s*"}
. . .

}
}

In either case, output generation is then accomplished
by executing the document with the argument describ-
ing the desired format.  For example, assuming the FAQ
source is stored in ExpectFAQ, HTML is generated
from the command line as:

% ExpectFAQ html

Text output is generated as:

% ExpectFAQ text

Experiences

The techniques described in this paper have been used
successfully in building several projects consisting of
large numbers of pages including the NIST Application
Protocol Information Base [Lubell] and the NIST Iden-
tifier Collaboration Service [Libes95].  In addition, they
have been used to construct and maintain several FAQs
including the Expect FAQ [Libes96].

Readers interested in comparative strategies to CGI gen-
eration should consult the Yahoo database [Yahoo]
which lists CGI libraries for dozens of languages, often
with multiple entries for each.   Readers should also
explore alternative strategies to CGI, such as the Tcl-
based server-side programming demonstrated by
Audience1 [Sah] and NeoScript [Lehen] which ele-
gantly solve problems that CGI alone cannot address
adequately.

The other aspect of this paper, dynamic document gen-
eration, is also an area rich in development.  Various
attempts are being made to solve this in other ways
including SGML and its extensions and alternatives.
Good discussion of these can be found in [Harman].

Concluding Notes

This paper has shown the benefits of generating HTML
from Tcl scripts.  CGI scripts are an obvious use of this.
However, even static documents benefit by increasing
readability and improving maintainability.

Traditionally, Perl has been the language of choice for
CGI scripting.  However, use of Tcl for CGI scripting
has increased significantly.  Part of this is simply due to
the number of people who already know Tcl. But Tcl
brings with it many beneficial attributes: Tcl is a simple
language to learn.  Its portability is excellent, it is
robust, and it has no significant startup overhead.  And
of course it is easily embeddable in other applications
making it that much easier to leverage ongoing develop-
ment in languages such as C and C++.

These are all characteristics that make Tcl very attrac-
tive for CGI scripting.  However, Tcl does not have a
history of use for CGI scripting and there is little docu-
mentation to help beginners get started.  Hopefully, this
paper will make it easier for more people to get starting
writing CGI scripts in Tcl.

Availability

The CGI library described is available at http://
www.cme.nist.gov/pub/expect/cgi.tcl.tar.Z.  The FAQ
library described can be retrieved from the Expect FAQ
itself [Libes96].  This software is in the public domain.
NIST and I would appreciate credit if you use this soft-
ware.

Acknowledgments

Thanks to Josh Lubell, John Buckman, Mark William-
son, Steve Ray, and the Tcl ‘96 program committee for
valuable suggestions on this paper.



References

[BLee] T. Berners-Lee, D. Connolly, “Hypertext
Markup Language – 2.0, RFC 1866, HTML
Working Group, IETF, Corporation for
National Research Initiatives, URL: http://
www.w3.org/pub/WWW/MarkUp/html-
spec/html-spec_toc.html, September 22,
1995.

[Harman] Harman, D., “Overview of the Third Text
REtrieval Conference (TREC-3), NIST Spe-
cial Publication 500-225, NIST, Gaithers-
burg, MD, April 1995.

[Lehen] Lehenbauer, K., “NeoScript”, URL: http://
www.NeoSoft.com/neoscript/, 1996.

[Libes95] Libes, D., “NIST Identification Collabora-
tion Service”, URL: http://www-
i.cme.nist.gov/cgi-bin/ns/src/welcome.cgi,
National Institute of Standards and Technol-
ogy, 1995.

[Libes96] Libes, D., “Expect FAQ”, URL: http://
www.cme.nist.gov/pub/expect/FAQ.html”,
National Institute of Standards and Technol-
ogy, 1996.

[Lubell] Lubell, J., “NIST Identification Collabora-
tion Service”, URL: http://www-
i.cme.nist.gov/proj/apde/www/apib.htm,
National Institute of Standards and Technol-
ogy, 1996.

[Ouster] Ousterhout, J., “Tcl and the Tk Toolkit”,
Addison-Wesley Publishing Co., 1994.

[Sah] Sah, A., Brown, K., and Brewer, E., “Pro-
gramming the Internet from the Server-Side
with Tcl and Audience1”, Tcl/Tk Workshop
96, Monterey, CA, July 10-13, 1996.

[Yahoo] “Yahoo!”, URL: http://www.yahoo.com/
Computers_and_Internet/Internet/
World_Wide_Web/
CGI___Common_Gateway_Interface/,
April, 1996.



Abstract

CGI scripts enable dynamic generation of HTML pages.
This paper describes how to write CGI scripts using Tcl.
Many people use Tcl for this purpose already but in an
ad hoc way and without realizing many of the more non-
obvious benefits.  This paper reviews these benefits and
provides a framework and examples.  Canonical solu-
tions to HTML quoting problems are presented.  This
paper also discusses using Tcl for the generation of dif-
ferent formats from the same document.  As an exam-
ple, FAQ generation in both text and HTML are
described.

Keywords: CGI; FAQ; HTML generation; Tcl; World
Wide Web

Introduction

CGI scripts enable dynamic generation of HTML pages
[BLee].  Specifically, CGI scripts generate HTML in
response to requests for Web pages.  For example, a
static Web page containing the date might look like this:

<p>The date is Mon Mar  4 12:50:10 EST
1996.

This page was constructed by manually running the date
command and pasting its output in the page.  The page
will show that same date each time it is requested, until
the file is manually rewritten with a different date.

Using a CGI script, it is possible to dynamically gener-
ate the date.  Each time the file is requested, it will show
the current date.  This script (and all others in this paper)
are written in Tcl [Ouster].

puts "Content-type: text/html\n"
puts "<p>The date is [exec date]."

The first puts command identifies how the browser
should treat the remainder of the data – in this case, as
text to be interpreted as HTML.  For all but esoteric
uses, this same first line will be required in every CGI
script.

CGI scripts have many advantages over statically writ-
ten HTML.  For example, CGI scripts can automatically
adapt to changes in the environment, such as the date in
the previous example.  CGI scripts can run programs,
include and process data, and just about anything that
can be done in traditional programs.

CGI scripts are particularly worthwhile in handling Web
forms.  Web forms allow users to enter data into a page
and then send the results to a Web server for processing.
The Web form itself does not have to be generated by a
CGI script.  However, data entered by a user may
require a customized response.  Therefore, a dynami-
cally generated response via a CGI script is appropriate.
Since the response may produce another form, it is com-
mon to generate forms dynamically as well as their
responses.

CGI Scripts Are Just a Subset of Dynamic
HTML Generation

CGI scripts are a special case of generated HTML.
Generated HTML means that another program produced
the HTML.  There can be a payoff in programmatic gen-
eration even if it is not demanded by the CGI environ-
ment.  I will describe this idea further later in the paper.

Simply embedding HTML in Tcl scripts does not in
itself provide any payoff.  For instance, consider the
preparation of a page describing various types of wid-
gets, such as button widgets, dial widgets, etc.  Ignoring
the body paragraphs, the headers could be generated as
follows:

puts "<h3>Button Widgets</h3>"
puts "<h3>Dial Widgets</h3>"

Much of this is redundant and suggests the use of a pro-
cedure such as this one:

proc h3 {header} {
puts "<h3>$header</h3>"

}

Now the script can be rewritten:

h3 "Button Widget"

Writing CGI scripts in Tcl

Don Libes
National Institute of Standards and Technology

libes@nist.gov

Reprinted fromThe Proceedings of the Fourth Annual Tcl/Tk Workshop ‘96, Monterey, CA, July 10-13, 1996.



h3 "Dial Widget"

Notice that you no longer have to worry about adding
closing tags such as /h3 or putting them in the right
place.  Also, changing the heading level is isolated to
one place in each line.

Using a procedure name specifically tied to an HTML
tag has drawbacks.  For example, consider code that has
level 3 headings for both Widgets and Packages.  Now
suppose you decide to change just the Widgets to level
2.  You would have to look at each h3 instance and man-
ually decide whether it is a Widget or a Package.

In order to change groups of headers that are related, it
is helpful to use a logical name rather than one specifi-
cally tied to an HTML tag.  This can be done by defin-
ing an application-specific procedure such as one for
widget headers:

proc widget_header {heading} {
h2 "$header Widget"

}
proc package_header {heading} {

h3 "$heading Package"
}

The script can then be written:

widget_header "Button"
widget_header "Dial"
package_header "Object"

Now all the widget header formats are defined in one
place – the widget_header procedure.  This includes not
only the header level, but any additional formatting.
Here, the word “Widget” is automatically appended, but
you can imagine other formatting such as adding hyper-
links, rules, and images.

This style of scripting makes up for a deficiency of
HTML: HTML lacks the ability to define application-
specific tags.

Form Generation

The idea of logical tags is equally useful for generation
of Web forms.  For example, consider generation of an
entry box.  Naively rendered in Tcl, a 10-character entry
box might look this way:

puts "<input name=Username size=10>"

This is fine if there is only one place in your code which
requires a username.  If you have several, it is more con-
venient to place this in a procedure.  Dumping this all
into a procedure simplifies things a little, but enough
additional attributes on the input tag can quickly render
the new procedure impenetrable.  Applying the same

technique shown earlier suggests two procedures: text
and username.  text is the application-independent
HTML interface.  username is the application-specific
interface.  An example definition for username is shown
below.  Remember that this is specific to a particular
application.  In this case, a literal prompt is shown (the
HTML markup for this would be defined in yet another
procedure).  Then the 10-character entry box containing
some default value.

proc username {name defvalue} {
prompt "Username"
text $name $defvalue 10

}

When the form is filled out, the user’s new value will be
provided as the value for the variable named by the first
parameter, stored here in “name”.  Later in this paper,
I’ll go into this in more detail.

A good definition for text is relatively ugly because it
must do the hard work of adding quotes around each
value at the same time as doing the value substitutions.
This is a good demonstration of something you want to
write as few times as possible – once, ideally.  In con-
trast, you could have hundreds of application-specific
text boxes.  Those procedures are trivial to write and
make all forms consistent.  In the example above, each
call to username would always look identical.

proc text {name defvalue {size 50}} {
puts "<input name=\"$name\"\

    value=\"$defvalue\" size=$size>"
}

Once all these procedures exist, the actual code to add a
username entry to a form is trivial:

username new_user $user

Many refinements can be made.  For example, it is com-
mon to use Tcl variables to mirror the form variables.
The rewrite in Figure 1 tests whether the named form
variable is also a Tcl variable.  If so, the value is used as
the default for the entry.

If username called this procedure, the second argument
could be omitted if the variable name was identical to
the first argument.  For example:

username User

An explicit value can be supplied in this way:

username User=don

And arbitrary tags can be added as follows:

username User=don size=10 \
                 maxlength=5



Many other procedures are required for a full implemen-
tation.  Here are two more which will be used in the
remainder of the paper.  The procedure “p” starts a new
paragraph and prints out its argument.  The procedure
“put” prints its argument with no terminating newline.
And puts, of course, can be called directly.

proc p {s} {
puts "<p>$s"

}
proc put {s} {

puts -nonewline "$s"
}

Inline Directives

Some HTML tags affect characters rather than complete
elements.  For example, a word can be made bold by
surrounding it with <b> and </b>.  As before, redun-
dancy can be eliminated by using a procedure:

proc bold {s} {
puts "<b>$s</b>"

}

Unlike the earlier examples, it is not desirable to have
character-based procedures call puts directly.  Other-
wise, scripts end up looking like this:

put "I often use "
bold "Tcl"
put "to program."

These character-based procedures can be made more
readable by having them return their results like this:

proc bold {s} {
return "<b>$s</b>"

}

Using these inline directives, scripts become much more
readable:

p "I often use [bold Tcl] to
program."

Explicit use of a procedure such as bold shares the same
drawbacks as explicit use of procedures such as h2 and
h3.  If you later decide to change a subset of some uses,

you must examine all of them.  By using logical proce-
dure names, that trap is avoided.  For example, suppose
that you want hostnames to always appear the same way.
But there is no hostname directive in HTML.  So you
could arbitrarily choose bold and write:

proc hostname {s} {
return [bold $s]

}

An example using this is:

p "You may ftp the files from [host
$ftphost] or [host $ftpbackuphost]."

If you later decide to change the appearance of host-
names to, say, italics, it is now very easy to do so.  Sim-
ply change the one-line definition of the hostname
procedure.

URLs

URLs have a great deal of redundancy in them, so using
procedures can provide dramatic benefits in readability
and maintainability.  Similarly to the previous section,
hyperlinks can be treated as inline directives.  By pre-
storing all URLs, generation of a URL then just requires
a reference to the appropriate one.  While separate vari-
ables can be used for each URL, a single array
(_cgi_link) provides all URL tags with their own
namespace.   This namespace is managed with a proce-
dure called link.  For example, suppose that you want to
produce the following display in the browser:

I am married toDon Libes who works in the
Manufacturing Collaboration Technologies
Group atNIST.

Using the link procedure, with appropriate link defini-
tions, the scripting to produce this is simple:

p "I am married to [link Libes] who
works in the [link MCTG] at [link
NIST]."

This expands to a sizeable chunk of HTML:

proc text {nameval args} {
regexp "(\[^=]*)(=?)(.*)" $nameval dummy name q value

put "<input name=\"$name\""

if {$q != "="} {
set value [uplevel set $name]

}
puts " value=\"[quote_html $value]\" $args>"

}

Figure 1: Procedure to create a generic text entry



I am married to <A HREF="http://
elib.cme.nist.gov/msid/staff/libes/
libes.don.html">Don Libes</A> who
works in the <A HREF="http://
elib.cme.nist.gov/msid/groups/
mctg.htm">Manufacturing
Collaboration Technologies Group</A>
at <A HREF="http://
www.nist.gov">NIST</A>.

Needless to say, working on such raw text is the bane of
HTML page maintainers.  Yet HTML has no provisions
itself for reducing this complexity.1

The link procedure is shown in Figure 2.  It returns the
formatted link given the tag name as its first argument.

1. It is tempting to think that relative URLs
can simplify this, but relative URLs only
apply to URLs that are, well, relative.  In
this example, the URLs point to a different
host than the one where the referring page
lives.  Even if this isn’t the case, I avoid rel-
ative URLs because they prevent other peo-
ple from copying the raw HTML and
pasting it into their own page (again, on
another site) without substantial effort in
first making the URLs absolute.

The second argument, if given, declare a name to be dis-
played by the browser.  The third argument is the URL.

Links can be defined by handcoding the complete abso-
lute URL.  However, it is much simpler to create a few
helper variables to further minimize redundancy.  Figure
3 shows to refer to several of my colleagues whose
home pages all exist in the same staff directory.

If the location of any one staff member’s page changes,
only one line needs to be changed.  More importantly, if
the directory for the MSID staff pages changes, only one
line needs to be changed.  MSID_STAFF is dependent
on another variable that defines the hostname.  The host-
name is stored in a separate variable because 1) it is
likely to change and 2) there are other links that depend
on it.

Figure 4 shows some examples of hosts.

There are no restrictions on tag names or display names.
For example, sometimes it is useful to display “Don”.
Sometimes, the more formal “Don Libes” is appropri-
ate.  This is done by defining two links with different
names but pointing to the same URL.  This is shown in
Figure 5.

proc link {args} {
global _cgi_link

set tag [lindex $args 0]
if {[llength $args] == 3} {

set _cgi_link($tag) \
"<A HREF=\"[lindex $args 2]\">[lindex $args 1]</A>"

}
return $_cgi_link($tag)

Figure 2: Procedure to access a database of URL links.

set MSID_STAFF $MSID_HOST/msid/staff

link Steve "Steve Ray" $MSID_STAFF/ray.steve.html
link Don "Don Libes" $MSID_STAFF/libes.don.html
link Josh "Josh Lubell" $MSID_STAFF/josh.lubell.html

Figure 3: Create links to several colleagues who home pages all exist in the same staff directory.

set MSID_HOST http://elib.cme.nist.gov
set NIST_HOST http://www.nist.gov
set ORA_HOST http://www.ora.com

Figure 4: Some examples of hosts.

link Don "Don" $MSID_STAFF/libes.don.html
link Libes "Don Libes" $MSID_STAFF/libes.don.html

Figure 5: Create links to the same URL but display them to the user differently.



Similarly, there are no restrictions on the tag names
themselves.  Consider the link definitions in Figure 6.
These are used in paragraphs such as this one:

p "You can ftp Expect from
ftp.cme.nist.gov as [link Expect.Z]
or [link Expect.gz]"

A browser shows this as:

You can ftp Expect from ftp.cme.nist.gov as
pub/expect/expect.tar.Z or...gz.

Having link dependencies localized to one place greatly
aids maintenance and testing.  For example, if you have
a set of pages that use the definitions (i.e., by sourcing
them), editing that one file automatically updates all of
the other pages the next time they are regenerated.  This
is useful for testing groups of pages on a different
server, such as a test server before moving them over to
a production location.  Even smaller moves can benefit.
For example, it is common to move directories around
or create new directories and just move some of the files
around.

Quoting

HTML values must be quoted at different times and in
different ways.  Unfortunately, the standards are hard to
read so most people guess instead.  However, intuitively
figuring out the quoting rules is tricky because simple
cases don’t require quoting and many browsers handle
various error cases differently.  It can be very difficult to
deduce what is correct when your own browser accepts
erroneous code.  This section presents procedures for
handling quoting.

CGI Arguments

CGI scripts can receive input from either forms or
URLs.  For example, in a URL specification such as
http://www.nist.gov/expect?help=input+foo, anything to
the right of the question mark becomes input to the CGI
script (which conversely is to the left of the question
mark).

Various peculiar translations must be performed on the
raw input to restore it to the original values supplied by
the user.  For example, the user-supplied string “foo bar”
is changed to “foo+bar”.  This is undone by the first reg-
sub in unquote_input (shown in Figure 7).  The remain-

ing conversions are rather interesting but understanding
them is outside the point of this paper.

The converse procedure to unquote_input is shown
below.  This transformation is usually done automati-
cally by Web browsers.  However, it can be useful if
your CGI script needs to send a URL through some
other means such as an advertisement on TV.

proc quote_url {in} {
regsub -all " " $in "+" in
regsub -all "%" $in "%25" in
return $in

}

In theory, this procedure should perform additional
character translations.  However, you should avoid gen-
erating such characters since receiving URLs outside of
a browser requires hand-treatment by users.  In these sit-
uations, all bizarre character sequences should be
avoided.  For the purposes of testing (feeding input
back), additional translation is also unnecessary since
any other unquoted characters will be passed untouched.

Suppressing HTML Interpretation

In most contexts, strings which contain strings thatlook
like HTML will be interpreted as HTML.  For example,
if you want to display the literal string “<A
HREF=....>”, it must be encoded so that the “<” is not
turned into a hyperlink specification.  Other special
characters must be similarly protected.  This can be
done using quote_html, shown below:

proc quote_html {s} {
# ampersand must be done first!
regsub -all {&} $s {\&amp}  s
regsub -all {"} $s {\&quot} s
regsub -all {<} $s {\&lt}   s
regsub -all {>} $s {\&gt}   s
return $s

}

This can be used to simplify other procedures.  Adding
explicit double quotes before returning the final value
allows simplification of many other procedures.
Assuming this new procedure is called dquote_html,
consider the earlier text entry procedure which had the
code fragment

value=\"$defvalue\"

This could be rewritten:

value=[dquote_html $defvalue]

link Expect.Z   "pub/expect/expect.tar.Z" $EXPECT_DIR/expect.tar.Z
link Expect.gz  "...gz"   $EXPECT_DIR/expect.tar.gz

Figure 6: Link tags and definitions can be very unusual.  There are no restrictions.



Argument Cracking

As described earlier, input strings to a CGI script are
encoded by the browser.  Besides the transformations
described already, the browser also packs all variable
values together in the form variable1=value1&variable2
=value2&variableN=valueN.

The input procedure (Figure 8) splits the input back into
its specific variable/value pairs leaving them in a global
array called _cgi_var.  Any variable ending with the
string “List” causes its value to be treated as a Tcl list.
This allows, for example, multiple elements of a listbox
to be extractable as individual elements.

If the procedure is run in the CGI environment (i.e., via
an HTTPD server), input is automatically read from the
environment.  If not run from the CGI environment (i.e.,
via the command line), the argument is used as input.
This is very useful for testing.  An explicit argument
obviates the need for using a real form page to drive the
script and means it is easily run from the command line
or a debugger.

If the global variable _cgi(debug) is set to 1, the proce-
dure prints the input string before doing anything else.
This is useful because it may then be cut and pasted into
the procedure argument for debugging purposes, as was
just mentioned.

Import/Export

Variables are not automatically entered into separate
global variables or the env array because that would
open a security hole.  Instead, variables must be explic-
itly requested.  Several procedures simplify this.  The
procedure most commonly used is “import”.

import is called for each variable defined from the
invoking form.  For example, if a form used an entry
with “name=foo”, the command “import foo” would
define foo as a Tcl variable with the value contained in
the entry.  The command import_cookie is a variation
that obtains the value from a cookie variable – a mecha-
nism that allows client-side caching of variables.

proc import {name} {
upvar $name var
upvar #0 _cgi_uservar($name) val

set var $val
}

Form variables are automatically exported to the called
CGI script.  It is sometimes necessary to export other
variables.  This must be done explicitly.  Figure 9 shows
the export procedure which exports the named variable.
Similar to the text procedure, if the first argument is in
the form “var=value”, the variable as exported with the
given value.  Otherwise, the variable is treated as a Tcl
variable and its value is used.

proc unquote_input {buf} {
# rewrite "+" back to space
regsub -all {\+} $buf {\ } buf

# protect $ so Tcl won’t do variable expansion
regsub -all {\$} $buf {\$} buf

# protect [ so Tcl doesn’t do evaluation
regsub -all {\[} $buf {\[} buf

# protect quotes so Tcl doesn’t terminate string early
regsub -all \" $buf \\\" buf

# replace line delimiters with newlines
regsub -all "%0D%0A" $buf "\n" buf
# Mosaic sends just %0A.  This is handled in the next command.

# prepare to process all %-escapes
regsub -all {%([A-F0-9][A-F0-9])} $buf {[format %c 0x\1]} buf
# Mosaic sends just %0A.  This is handled in the next command.

# prepare to process all %-escapes
regsub -all {%([A-F0-9][A-F0-9])} $buf {[format %c 0x\1]} buf

# process %-escapes and undo all protection
eval return \"$buf\"

}

Figure 7: Translate HTML-style input to original data.



Error Handling

The CGI environment makes no special provisions for
errors.  Thus, error processing requires explicit handling
by the application programmer.  If none is made, any
error messages produced (e.g., by the Tcl interpreter)
are sent on to the client browser.  These are rarely mean-
ingful to the user.  Even worse, they can be misinter-
preted as HTML in which case the result is
incomprehensible even to the script creator.

The procedure in Figure 10 provides a framework to
evaluate the body of the CGI script, to automatically

catch errors, and attempt to do something useful.  The
two arguments, head and body, are blocks of Tcl com-
mands which create the head and body of an HTML
form.  An example is shown later.

If the global value _cgi(debug) is 1, the script error is
formatted and printed to the screen so that it is readable.
If debug is 0, a simple message is printed saying that an
error occurred and that the “diagnostics are being
emailed to the service system administrator”.  At the
same time, mail is sent to the service administrator.  The
mail includes everything about the environment that is
necessary to reproduce the problem including the error,

proc input {{fakeinput {}}} {
global env _cgi _cgi_uservar

if {![info exists env(REQUEST_METHOD)]} {
set input $fakeinput;# running by hand, so fake it

} elseif { $env(REQUEST_METHOD) == "GET" } {
set input $env(QUERY_STRING)

} else {
set input [read stdin $env(CONTENT_LENGTH)]

}
# if script blows up later, enable access to the original input.
set _cgi(input) $input

# good for debugging!
if {$_cgi(debug)} {

puts "<pre>$input</pre>"
}

set pairs [split $input &]
foreach pair $pairs {

regexp (.*)=(.*) $pair dummy varname val

set val [unquote_input $val]

# handle lists of values correctly
if [regexp List$ $varname] {

lappend _cgi_uservar($varname) $val
} else {

set _cgi_uservar($varname) $val
}

}

# repeat loop above but for cookies
}

Figure 8: Retrieve CGI input

proc export {nameval} {
regexp "(\[^=]*)(=?)(.*)" $nameval dummy name q value

if {$q != "="} {
set value [uplevel set $name]

}

put "<input type=hidden name=$name \
value=[dquote_html $value]>"

}

Figure 9: Export a variable to the CGI script.



the script name, and the input.  The implementation
shown here is skeletal.  In the actual definition, a variety
of other interesting problems are handled.  For instance,
cookie definitions must appear in the output before any
HTML.  However, cookies are more easily generated as
one of the final results in a script.  This and other prob-
lems are solved by the full implementation, however the
details are beyond the scope of this paper.

Using the procedures defined, CGI scripts become very
simple.  They all start out by sourcing the CGI support
routines.  Then cgi_eval is called with arguments to cre-
ate the head and body.  The head generates titles, link

colors, etc., while the body is responsible for importing,
exporting, and generation of text and graphical elements
as has already been described.  A skeletal example is
shown in Figure 11

The title procedure (not shown) produces all of the usual
HTML boilerplate including titles, backgrounds, etc.  A
form procedure simplifies the calling conventions for
establishing any forms.  This is not difficult.  However,
of critical importance is noting that a form is in
progress.  Because some browsers won’t show anything
if a form hasn’t been ended (i.e., “/form”), the error han-
dler must prematurely close the form if an unexpected

proc cgi_eval {head body} {
global env _cgi

set _cgi(body) "$head;cgi_body_start;app_body_start;$body;app_body_end"
uplevel #0 {

cgi_body_start
if 1==[catch $_cgi(body)] {      # errors occurred, handle them

set _cgi(errorInfo) $errorInfo

# close possible open form because some
# browsers won’t show errors otherwise
if [info exists _cgi(form_in_progress)] {

puts "</form>"
}

h3 "An internal error was detected in the service software. \
The diagnostics are being emailed to the service\
system administrator."

if {$_cgi(debug)} {
puts "Heck, since you’re debugging, I’ll show you the\

errors right here:"
# suppress formatting
puts "<xmp>$_cgi(errorInfo)</xmp>"

} else {
mail_start $_cgi(email_admin)
mail_add "Subject: $_cgi(name) problem"
mail_add
if {$env(REQUEST_METHOD) != "by hand"} {

mail_add "CGI environment:"
mail_add "REQUEST_METHOD: $env(REQUEST_METHOD)"
mail_add "SCRIPT_NAME: $env(SCRIPT_NAME)"
catch {mail_add "HTTP_USER_AGENT: $env(HTTP_USER_AGENT)"}
catch {mail_add "REMOTE_ADDR: $env(REMOTE_ADDR)"}
catch {mail_add "REMOTE_HOST: $env(REMOTE_HOST)"}

}
mail_add "input:"
mail_add "$_cgi(input)"
mail_add "errorInfo:"
mail_add "$_cgi(errorInfo)"
mail_end

}
}
cgi_body_end

}
}

Figure 10: Framework to catch errors and report them intelligently.



error occurs.  Saving this information is done with a
simple global variable.  The form procedure is shown in
Figure 12.

Many other utilities are necessary such as procedures
for each type of form element.  Space prevents inclusion
of them.  Several other miscellaneous utilities complete
the basic implementation of the procedures that appear
in this paper.  A few are mentioned here to give a flavor
for what is necessary:

cgi Converts a form name to a
complete URL.

mail_start Generates headers and writes
them to a new file representing
a mail message to be sent.

mail_add Writes a new line to the tempo-
rary mail file.

mail_end Appends a signature to the
temporary mail file, sends it,
and deletes the file.

cgi_body_start Generates the <body> tag and
handles user requests such as
backgrounds and various color

options.  cgi_body_end is anal-
ogous.

All of the procedures described so far can be invoked
with “cgi_” prepended (if they do not already begin that
way).  In practice, CGI scripts are generally quite short
so this isn’t often useful – and writing things like
“cgi_h2” is particularly irritating.  However conflicts
with other namespaces can occasionally make such pre-
fixes a necessary evil.

Several procedures are expected to be redefined by the
user.  Here are two examples that appear in the body
procedure earlier.

app_body_start Application-supplied proce-
dure, typically for writing ini-
tial images or headers common
to all pages.

app_body_end Application-supplied proce-
dure, typically for writing sig-
nature lines, last-update-by,
etc.

source cgi.tcl

cgi_eval {
title "Password Change Acknowledgment"
input "name=libes&old=swordfish&new1=tgif23&new2=tgif23

} {
import name
import old

... other stuff
form password {

spawn /bin/passwd
expect "Password:"
...

}
}

Figure 11: Skeletal example of the CGI procedures in use.

proc form {name cmd} {
global _cgi

set _cgi(form_in_progress) 1
puts "<form method=POST action=[cgi $x]>"
uplevel $cmd
puts "</form>"
unset _cgi(form_in_progress)

}

Figure 12: The form procedure creates an HTML-style form.



FAQ generation

Earlier I mentioned that CGI scripts are just a subset of
HTML generation.  As an example, consider the task of
building an FAQ in HTML.  There is no benefit to
dynamically generating an FAQ – it rarely changes.
However, an FAQ has some of the same problems as I
described earlier.  For example, it can include many
links which must be kept current.

Another reason that it makes sense to think about gener-
ating HTML for an FAQ is that an FAQ is highly styl-
ized.  For example, an FAQ always has a set of
questions.  These questions are then repeated but with
answers.  Written manually, you would have to literally
repeat the questions and create the links.  If a new ques-
tion was added or an old one deleted, you would have to
carefully make sure that both entries were handled iden-
tically.

Intuitively, this could be automated using two loops.
First, the questions and answers would be defined.  Then
the first loop would print the questions.  The second
loop would print the questions (again) interspersed with
the answers.  In pseudocode:

define QAs                ;# pseudocode!

foreach qa $QAs {
print_question $qa

}

foreach qa $QAs {
print_question $qa
print_answer $qa

}

It suffices to store the questions and answers in an array.
The following code numbers each pair and stores ques-

tion N in qa(N,q) and the corresponding answer in
qa(N,a).  At the same time, the question is printed out.
Thus, there is no need for the first loop in the earlier
pseudocode.

proc question {q a} {
global index qa

incr index

set qa($index,q) $q
set qa($index,a) $a

puts "<A HREF=\"#q$index\">"
puts "<li>$q"
puts "</A>"

}

Each question automatically links to its corresponding
answer, linked as #qN.  When the question/answer pairs
are later printed, they will have A HREF tags defining
the #qN targets.

The source for an example question/answer definition is
shown in Figure 13.

The question is now only stated once and it is always
paired with the answer.  This simplifies maintenance.

Notice that the answer is not simply a string.  The
answer is Tcl code.  This makes it possible to use all of
the techniques mentioned earlier.  For example, the
example above uses p to generate new paragraphs and
link to generate hyperlinks.

The code is evaluated by passing the answer to eval
whenever it is needed.  An answer procedure does this
and generates the hyperlink target at the same time.

proc answer {i} {

question {I keep hearing about Expect.  So what is it?} {

p "Expect is a tool primarily for automating interactive applications
such as telnet, ftp, passwd, fsck, rlogin, tip, etc.  Expect really
makes this stuff trivial.  Expect is also useful for testing these
same applications.  Expect is described in many books, articles,
papers, and FAQs.  There is an entire [link book] on it available
from [link ORA]."

p "You can ftp Expect from ftp.cme.nist.gov as [link Expect.Z] or
[link Expect.gz]"

p "Expect requires Tcl.  If you don’t already have Tcl, you can get
it in the same directory (above) as [link Tcl.Z] or [link Tcl.gz]."

p "Expect is free and in the public domain."

};# end question

Figure 13: Source to an example question/answer definition.



global qa

puts "<p>"
puts "<A NAME=\"q$i\">"
puts "<li><b>$qa($i,q)</b>"
puts "</a>"
puts "<p>"
eval $qa($i,a)

}

For example, “answer 0” would produce the beginning
of the output from the earlier question.  The full HTML
would begin like this:

<p>
<A NAME="q0">
<li><b>I keep hearing about Expect.
So what is it?</b>
</a>
<p>Expect is a tool primarily for
automating interactive . . .

The answer procedure itself is called from a loop in
another procedure called answers (Figure 14).  An
answer_header procedure prints out a header if one has
been associated with the current question.  This provides
a way of breaking the FAQ into sections.  A matching
procedure (question_header) defines and prints the
headers as they are encountered.

proc answer_header {i} {
global qa

h3 "$qa($i,h)"
}

proc question_header {h} {
global index qa

set qa($index,h) $h
puts "<A HREF=\"#h$index\">"
h3 $h
puts "</A>"

}

Translation to Other Formats

Another benefit of using logical tags is that different
output formats can be generated by changing the appli-

cation-specific procedures.  For instance, suppose a hor-
izontal rule is produced using the hr command.
Obviously this can be defined as “puts <hr>”.  It is eas-
ily changed to produce text using the following proce-
dure:

proc hr {} {
puts ============================

}

Here are analogous definitions for h1 and h2.  Others are
similar.

proc h1 {s} {
puts ""
puts "*"
puts "* $s"
puts "*"
puts ""

}

proc h2 {s} {
puts "*** $s ***"

}

For example, with this new definition, “h1 Questions”
reasonably simulates a level 1 header using only text as:

*
* Questions
*

The ability to generate the FAQ in different forms is
convenient.  For example, it means that people can read
the FAQ without having an HTML browser.

The generation of different formats is simplified by
avoiding use of explicit HTML tags and instead using
logical procedure names.  A particular output format can
be produced merely by providing an appropriate set of
procedure definitions.  Although I have not done so, it
should be possible to adapt the framework and ideas
shown here to produce output in such formats as TEX,
MIF, and others.  Even without translation, avoiding
explicit HTML is a good idea for the reasons mentioned
earlier – maintenance and readability.

proc answers {} {
uplevel #0 {

start_answers
for {set index 0} {$index < $maxindex} {incr index} {

catch {answer_header $index}
answer $index
hr

}
}

}

Figure 14: Generate all the answers in the FAQ.



A Translation Framework

Translation is further simplified by separating the appli-
cation-specific definitions from the content of the partic-
ular document.  For example, multiple FAQs could reuse
the same set of FAQ support definitions.  Each FAQ
would start by loading the FAQ definitions by means of
a source command appropriate to the desired output:

source FAQdriver.$argv

A driver for each output format defines the procedures
to produce the FAQ in that particular format.  For exam-
ple, FAQdriver.html would begin:

# driver.html - Tcl to HTML procs
proc hr {} {puts "<hr>"}

FAQdriver.text would start similarly:

# driver.text - Tcl to text procs
proc hr {} {puts ===================}

If short enough, all of the different definitions can be
maintained as a single file which simply uses a switch to
define the appropriate definitions.

switch $argv {
html {

proc emphasis {s} {
puts "<em>$s</em>"

}
. . .

}
text {

proc emphasis {s} {puts "*$s*"}
. . .

}
}

In either case, output generation is then accomplished
by executing the document with the argument describ-
ing the desired format.  For example, assuming the FAQ
source is stored in ExpectFAQ, HTML is generated
from the command line as:

% ExpectFAQ html

Text output is generated as:

% ExpectFAQ text

Experiences

The techniques described in this paper have been used
successfully in building several projects consisting of
large numbers of pages including the NIST Application
Protocol Information Base [Lubell] and the NIST Iden-
tifier Collaboration Service [Libes95].  In addition, they
have been used to construct and maintain several FAQs
including the Expect FAQ [Libes96].

Readers interested in comparative strategies to CGI gen-
eration should consult the Yahoo database [Yahoo]
which lists CGI libraries for dozens of languages, often
with multiple entries for each.   Readers should also
explore alternative strategies to CGI, such as the Tcl-
based server-side programming demonstrated by
Audience1 [Sah] and NeoScript [Lehen] which ele-
gantly solve problems that CGI alone cannot address
adequately.

The other aspect of this paper, dynamic document gen-
eration, is also an area rich in development.  Various
attempts are being made to solve this in other ways
including SGML and its extensions and alternatives.
Good discussion of these can be found in [Harman].

Concluding Notes

This paper has shown the benefits of generating HTML
from Tcl scripts.  CGI scripts are an obvious use of this.
However, even static documents benefit by increasing
readability and improving maintainability.

Traditionally, Perl has been the language of choice for
CGI scripting.  However, use of Tcl for CGI scripting
has increased significantly.  Part of this is simply due to
the number of people who already know Tcl. But Tcl
brings with it many beneficial attributes: Tcl is a simple
language to learn.  Its portability is excellent, it is
robust, and it has no significant startup overhead.  And
of course it is easily embeddable in other applications
making it that much easier to leverage ongoing develop-
ment in languages such as C and C++.

These are all characteristics that make Tcl very attrac-
tive for CGI scripting.  However, Tcl does not have a
history of use for CGI scripting and there is little docu-
mentation to help beginners get started.  Hopefully, this
paper will make it easier for more people to get starting
writing CGI scripts in Tcl.

Availability

The CGI library described is available at http://
www.cme.nist.gov/pub/expect/cgi.tcl.tar.Z.  The FAQ
library described can be retrieved from the Expect FAQ
itself [Libes96].  This software is in the public domain.
NIST and I would appreciate credit if you use this soft-
ware.

Acknowledgments

Thanks to Josh Lubell, John Buckman, Mark William-
son, Steve Ray, and the Tcl ‘96 program committee for
valuable suggestions on this paper.



References

[BLee] T. Berners-Lee, D. Connolly, “Hypertext
Markup Language – 2.0, RFC 1866, HTML
Working Group, IETF, Corporation for
National Research Initiatives, URL: http://
www.w3.org/pub/WWW/MarkUp/html-
spec/html-spec_toc.html, September 22,
1995.

[Harman] Harman, D., “Overview of the Third Text
REtrieval Conference (TREC-3), NIST Spe-
cial Publication 500-225, NIST, Gaithers-
burg, MD, April 1995.

[Lehen] Lehenbauer, K., “NeoScript”, URL: http://
www.NeoSoft.com/neoscript/, 1996.

[Libes95] Libes, D., “NIST Identification Collabora-
tion Service”, URL: http://www-
i.cme.nist.gov/cgi-bin/ns/src/welcome.cgi,
National Institute of Standards and Technol-
ogy, 1995.

[Libes96] Libes, D., “Expect FAQ”, URL: http://
www.cme.nist.gov/pub/expect/FAQ.html”,
National Institute of Standards and Technol-
ogy, 1996.

[Lubell] Lubell, J., “NIST Identification Collabora-
tion Service”, URL: http://www-
i.cme.nist.gov/proj/apde/www/apib.htm,
National Institute of Standards and Technol-
ogy, 1996.

[Ouster] Ousterhout, J., “Tcl and the Tk Toolkit”,
Addison-Wesley Publishing Co., 1994.

[Sah] Sah, A., Brown, K., and Brewer, E., “Pro-
gramming the Internet from the Server-Side
with Tcl and Audience1”, Tcl/Tk Workshop
96, Monterey, CA, July 10-13, 1996.

[Yahoo] “Yahoo!”, URL: http://www.yahoo.com/
Computers_and_Internet/Internet/
World_Wide_Web/
CGI___Common_Gateway_Interface/,
April, 1996.


